GUWAHATI: A research team at the Indian Institute of Technology Guwahati, led by Prof. Anil K. Mishra from the Department of Civil Engineering, has developed an innovative solution to two major global challenges: industrial waste management and sustainable construction. Their research focuses on creating a geopolymer using industrial byproducts and waste materials, such as water treatment sludge (WTS), fly ash (FA), and ground granulated blast furnace slag (GGBS).
With the rapid pace of urbanization and industrialization, managing industrial waste has become a critical global issue. Among the various types of industrial waste, water treatment sludge poses significant challenges due to its high water content and organic components. Water treatment plants worldwide generate approximately 100,000 tonnes of sludge daily. Traditional disposal methods, like landfilling or using sludge as soil additives, have proven to be costly and environmentally risky, as heavy metals can leach into groundwater.
Speaking on the research, Prof. Anil K. Mishra said, "Our research provides a solution by converting WTS and industrial byproducts like fly ash and GGBS into a geopolymer. Geopolymers are known for their high strength, durability, and minimal environmental impact. Through the process of geopolymerization, silicon and aluminum from these materials react with alkaline activators to form a three-dimensional aluminosilicate structure. This results in a material that matches traditional cement in performance while significantly reducing carbon emissions and energy consumption."
The findings of this study were published in the prestigious journal Construction and Building Materials, co-authored by Prof. Anil K. Mishra and his research scholars Alok Bijalwan and Bitupan Sonowal from IIT Guwahati.
One of the key applications of the WTS-FA-GGBS geopolymer is in road construction. The research team evaluated the mechanical properties of the geopolymer, specifically its suitability as a subgrade material for roads and pavements. The subgrade layer forms the foundation of roads, determining the pavement's strength and longevity. Using the WTS-based geopolymer as a stabilizer was found to significantly enhance road performance, particularly in soft or weak soils.
In addition to WTS, the team is also focused on geopolymerizing construction and demolition (C&D) waste, which exceeds 10 billion tonnes annually and constitutes over 35% of global waste. They have developed applications for C&D waste, including base and subbase layers for road pavements and paver blocks, contributing to effective waste management and reduced environmental impact.
Furthermore, the team is investigating the treatment of landfill-mined fine fractions from old municipal solid waste dumpsites, offering promising solutions while supporting circular economy initiatives. They are also exploring the stabilization of petroleum sludge by incorporating fly ash and GGBS, aiming to immobilize hazardous heavy metals and prevent environmental leaching.
Tests conducted by the IIT Guwahati team, including unconfined compressive strength (UCS) and California bearing ratio (CBR) assessments, revealed that the WTS-FA-GGBS geopolymer exceeds the minimum strength requirements for cement-stabilized subgrade materials. Durability tests confirmed its ability to withstand extreme environmental conditions, making it a reliable choice for infrastructure projects across diverse climates, a press release said.
Also Watch: